High throughput imaging of cellular forces

submit enquiry
High-throughput imaging of cellular forces
High-throughput imaging of cellular forces

University: University of St Andrews

Sector(s): Life Sciences

About Opportunity:

While conventional thinking in cell biology assumes that cells communicate via biochemical signalling, there is an increasing number of examples where mechanical effects are equally important, e.g. in development, physiology and disease. The current gold standard for imaging the mechanical forces applied by living cells are traction force microscopy and elastic micro-pillar arrays. However, these methods require zero-force reference images and thus removal of cells from the substrate, rendering them unavailable for immunostaining. In addition, fluorescence microscopy is usually needed, which can lead to photo-damage. Finally, both these methods have limited sensitivity to vertical forces. These factors have so far prevented the widespread use of cell mechanical assays, e.g. in clinical settings. What is currently missing is a generally applicable method to image cellular forces that is compatible with immunostaining and resolves weak forces with high throughput. Our novel micro-interferometer based force sensors provide direct, robust and non-destructive imaging of forces associated with various types of mechanical cell-substrate interaction.

While existing methods are generally based on localization microscopy, our novel sensors detect cell-induced substrate deformations interferometrically and thus provide unprecedented sensitivity. They are able to resolve not only forces exerted by cells that form firm focal adhesion contacts but can also detect protein-specific cell-substrate interaction and quantify much weaker vertical forces (down to piconewtons), e.g. during amoeboid-type cell migration through confined environments or the protrusion of podosomes. The new method requires no zero-force reference image, which enables continuous, long-term measurements of multiple cells on one substrate as well as further investigation of cells by immunostaining or other assays. As the interferometric sensors are read out by low-intensity wide-field imaging, forces are recorded at each point of the image simultaneously, thus facilitating observation of multiple cells at once without inducing photo-damage.

Key Benefits:

  • High throughput, robust and reference-free imaging of cellular forces
  • Unprecedented sensitivity to vertical forces
  • Seamless integration with other imaging modalities and bioassays
  • Continuous tracking of the mechanical activity of cells over long periods
  • Ready for massive parallelisation and applications in clinical diagnostics

Applications:

  • Mechanical force imaging of living cells
  • Measurement of mechanical cell-substrate interaction
  • Cell mechanical assays for diagnosticc tests and bioassays

IP Status:

The University filed UK patent application No GB1421214.6 on 28th November 2014 covering the technology concept and this application is now proceeding through national phase applications in the US 15/531118, Europe 15794269.9 and Singapore Patent Office as 11201704325Q.

St Andrews would welcome enquiries from commercial parties interested in developing applications for this novel interferometer-based sensor technology.

Enquiry

Please enter your name.

Please enter the name of the company you work for.

Is your company an SME?

Please select the country you are in.

Please select what part of the UK you are in.

Please select from the following options.

Please enter your email address.

To help us process your enquiry faster please enter some details about the information you are interested in.

Words remaining:

Please prove you are a human by completing this simple image recognition task.

Related Opportunities

  • Lab in a Pill

    Scientists at the University of Glasgow have pioneered a new sensor technology, Lab-in-a-Pill, that could have major impact on the cost and effectiveness of bowel cancer treatment.

    Expires: Created:
  • Thermoelectric Sensor

    The Thermoelectric Sensor technology is a Nano-Calorimetric Sensor which measures very small changes in temperature. The IP provides a route to making the most sensitive calorimetric measurements (with a resolution of 0.1 mK).

    Expires: Created:
  • Parkinson's Disease Model

    The University of Glasgow is offering an exciting new model for the evaluation of new treatments for Parkinsons disease

    Expires: Created:
  • Combination Treatment for MRSA Nasal Carriage and MRSA-infected Wounds

    The new treatment is a combination of a peptide (ranalexin) with bacteria cell wall-digesting protein (lysostaphin), which specifically targets and kills Staphylococcus aureus, including MRSA.

    Expires: Created:
  • Synergistic antifungal combination

    Candida species are a major cause of catheter-related nosocomial bloodstream infections. We have identified that the combination of an echinocandin antifungal with certain antimicrobial peptides results in potent, synergistic inhibition of yeast pathogens in vitro, so offering a potential combinatio...

    Expires: Created:

Alerts Signup

Sign up to our technology alerts and be the first to hear about any new technology opportunities from Scotland's universities


Register Now for University Technology.com Alerts


Search Filter

Share this page

Use the buttons below to share these technology opportunities on your favourite social networking site. You can also share them from inside the individual opportunity.