Novel chemical probes of epigenetic protein function

submit enquiry
X-ray crystal structure of the bromodomain inhibitor ET
X-ray crystal structure of the bromodomain inhibitor ET

University: University of Dundee

Sector(s): Healthcare & Pharmaceuticals, Chemical

About Opportunity:

There is increasing interest in the role of epigenetic changes – functional modifications of the genome that do not involve changes to the genetic code itself – in health and disease. Histones assist in the efficient and correct packaging of DNA (chromatin) and are key targets for epigenetic modification by, for example, binding by bromodomains of which there are >60 known examples in >40 human proteins. Misregulation of the so-called Bromo and Extra-Terminal (BET) proteins, a subfamily of four proteins (Brd2, Brd3, Brd4 and Brdt) that each contain two bromodomain units, have been implicated in diseases such as cancers and inflammation.

Several inhibitors of the BET bromodomains-histone interaction are showing promise in early clinical trials and creating great interest in this area of drug discovery. However, many of the current inhibitors are pan-selective across the BET bromodomain subfamily and there remains an ongoing need for better tools to selectively explore the role of single BET bromodomains or proteins. Researchers at Dundee have developed a robust method for selectively interrogating BET domains individually by introducing a single-point mutation that does not significantly affect the native domain structure, binding affinity and protein function. The strategy permits the design of complementary inhibitors that can selectively bind the mutated BET bromodomain without inhibiting the wild type. The methodology was successfully applied to a single BET bromodomain protein (Brd4) to show that the binding of the first bromodomain of Brd4 is sufficient to displace Brd4 from chromatin. Together this new strategy offers a powerful route to interrogate the role of single bromodomains in health and disease and for drug discovery programmes. Several novel structures with optimized BET domain selectivity and mutants with improved characteristics have been developed that will be of value for future drug development.

This reseach was funded by a grant from BBSRC.

Key Benefits:

  • It is a novel strategy for epigenetic drug discovery
  • It makes selective inhibitory ligands available
  • It has reproducible methodology


  • This new strategy offers a powerful route to interrogate the role of single bromodomains in health and disease and for drug discovery programmes
  • Valuable for future drug development

IP Status:

This technology is protected by two patent applications (EP 14809958.3 and US 15/039,350).


Please enter your name.

Please enter the name of the company you work for.

Is your company an SME?

Please select the country you are in.

Please select what part of the UK you are in.

Please select from the following options.

Please enter your email address.

To help us process your enquiry faster please enter some details about the information you are interested in.

Words remaining:

Related Opportunities

  • Telomerase Promoter - Cancer Therapies

    The University of Glasgow has developed a (Ad-hTR-NTR) which has been extensively tested on Ovarian cancer cells.

    Expires: Created:
  • SNP-based assay for analysis of MRSA

    This assay is a rapid and reproducible approach for epidemiological analysis of methicillin-resistant Staphylococcus aureus (MRSA) clinical isolates. The assay identifies different strains on EMRSA-15, which is a major cause of hospital acquired MRSA infections in the UK and in other parts of the wo...

    Expires: Created:
  • Catanostics - Non-Invasive Early Stage Cataract Diagnosis & Severity Quantification tool

    Catanostics (Cataract Diagnostics) offers an alternative to the slit lamp currently used for cataract diagnosis before referring a patient for cataract surgery. Our non-invasive fluorescence scan offers "better diagnosis" through non-subjective analysis of data on cataract symptoms & severity lea...

    Expires: Created:
  • Transforming Pharmaceutical Crystal Forms

    The innovation provides a gas-induced method for phase-transforming organic solids, such as pharmaceutical crystals. The inventive method subjects the polymorphs of pharmaceutical agents to various pressures of gases (such as CO2, N2O, and CH4) to induce phase transform with ease.

    Expires: Created:
  • Sperm Motility Enhancers for Assisted Reproductive Technology

    Sperm Motility Enhancers: A Novel Strategy for Assisted Reproductive Technology (ART) based on the direct relationship between human fertility and sperm motility,the University of Dundee has successfully identified FDA-approved compounds with robust and effective stimulation on patient sperm motilit...

    Expires: Created:

Alerts Signup

Sign up to our technology alerts and be the first to hear about any new technology opportunities from Scotland's universities

Register Now for University Alerts

Search Filter

Share this page

Use the buttons below to share these technology opportunities on your favourite social networking site. You can also share them from inside the individual opportunity.